
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 320 (2009) 145–162

www.elsevier.com/locate/jsvi
Analysis of forced transient response for rotating tires
using REF models

Y.T. Weia,�, L. Nasdalab, H. Rothertb

aState Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, PR China
bInstitute for Structural Analysis, University of Hannover, Appelstr. 9A, 30167 Hannover, Germany

Received 2 July 2008; accepted 12 July 2008

Handling Editor: L.G. Tham

Available online 6 September 2008
Abstract

This paper presents a new approach for tire dynamic analysis. By using this method, transient response for rotating tires

under various loading situations can be analyzed. The well-known model of ring on elastic foundations (REF) is utilized to

model tires. The general forced solution of undamped inextensible vibration is derived by the use of a modal expansion

technique as well as Meirovitch modal analysis method. Closed form transient response for the stationary constant point

load case is obtained; for the case of damped vibration, the response of rotating tire is formulated by using the first-order

matrix perturbation theory together with Meirovitch modal analysis method. The effects of damping on the tire response

are investigated. The developed method has been validated by comparison with direct numerical integration results.

Combined with a contact or interface model, the proposed methodology can be used to model the tire dynamic responses

under any given road profile.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Pneumatic tires greatly influence the riding comfort and noise level in cars. The dynamic response of tires,
hence, has been investigated since the early 1960s. Experimental natural frequencies and modes of tires have
been studied by Chiesa [1], Böhm [2], Potts et al. [3], and Guan and her co-workers [4–6]. Theoretical efforts
range from approximating the tire as a tension band, through treating it as a ring on an elastic foundation, to a
finite element approach [7–29]. Of these, the ring on elastic foundations (REF) model (see Fig. 1) has been the
most frequently adopted [7–20] because of the completeness and simplicity of ring theory yet with less sacrifice
of result accuracy.

The REF model of tires was initially developed by Clark [7], Tielking [8], Böhm [2] etc. in the 1960s to study
tire dynamic stiffness and tire–road contact problems. In their early work, tire sidewall was treated as radial
springs only and without considering initial stress, rotating, and wheel effects. Pacejia [10] first introduced
both radial and tangential springs to model the tire sidewall. Padovan [9] introduced treadband and sidewall
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A ring section area
an(t), bn(t) generalized coordinates
b ring width
cw, cv distributed damping coefficients of side-

wall in radial and tangential directions,
respectively

EA membrane stiffness of the ring
EI bending stiffness of the ring
fn natural frequency (Hz)
kw, kv distributed springs of sidewall in radial

and circumferential directions, respec-
tively

h ring thickness
n mode number
(r, y) mean radius and ring coordinates in the

rotating coordinate system, respectively
p0 internal pressure
pnk modal participation factors
qw, qv, qb applied radial, tangential force and

moment, respectively

(r, f) mean radius and ring coordinates in the
non-rotating coordinate system, respec-
tively

U, T, W potential, kinetic, and external force
energy respectively

v, w represent the mid-plane displacements of
the ring

v̄; w̄ circumferential and radial displacements
of the ring

(x, z) Cartesian coordinates in the non-rotating
coordinate system

(x*, z*) Cartesian coordinates in the rotating
coordinate system

( )0 (prime) designates the differentiation with
respect to y

r density
s0y initial stress in the ring
onk natural frequencies (rad/s)
O rotation speed
ð Þ
d

(dot) indicates the differentiation with respect
to time
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damping and Potts et al. [3] added rotating effect into the ring model. Initial stress effect was also addressed by
Pacejka [10], Padovan [9], and Potts et al. [3]. Using ring-type model, Gong [18] investigated the dynamic
properties of tire–wheel system in detail, especially the transfer characteristics of the system and Dohrmann
[19] studied the dynamics of the tire–wheel-suspension system. More recently, so-called the rigid ring model
[30] and the flexible ring model [31] were used to establish the tire model for Noise Vibration and Harshness
qvq� qw

h kw kv

r
x*

x

z*z
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O

Ωt
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Fig. 1. Schematic of tire ring model and tire section structure: (a) tire ring model and (b) tire section structure.
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(NVH) and ride comfort simulations. Huang and co-workers [16,17] derived the general equations of motion
that govern both transverse and circumferential motions of rotating rings and expanded the solution to forced
response. Several authors [18–20] investigated the forced response of the REF model under various loading
situations by modal expansion method.

The purpose of this paper is to present an analytical formulation of complete forced solution including
transient response for rotating tire REF model under various loading conditions. Following the introduction
we give, in Section 2, the equations of motion of a general rotating tire ring model using Hamilton principle. In
Section 3, the natural frequencies are obtained by using mode techniques. Then the physical parameters are
determined by fitting the predicted natural frequencies to the measured ones. In Section 4, the general forced
solution of undamped inextensible vibration is formulated by making use of the modal expansion technique.
Meirovitch modal analysis method [32,33] is then used to deal with the gyroscopic properties of the linear
differential equations about the generalized coordinates. A closed form transient response for the stationary
constant point load case is obtained. In Section 5, the response to damped vibration is investigated. The first-
order perturbation theory and Meirovitch modal analysis [34] are used to solve the linear gyroscopic system
about the generalized coordinates. Section 6 gives the summary and conclusions.
2. The equations of motion

In the case of a rotating tire modeled by a rotating ring on an elastic foundation as shown in Fig. 1, the
elastic properties of the sidewall are modeled by distributed springs, kw and kv, in radial and circumferential
directions, respectively. In order to describe the dynamics of the rotating ring it is convenient to have a
coordinate system that rotates with the wheel body. In contrast, the analysis of contact deformation and forces
is more conveniently performed using a separate coordinate system that translates with the contact patch of
the tire [18–20]. The origins of both coordinate systems are at the center of the wheel. The location of an
element of the tire is described using polar coordinates (r, f) in the non-rotating coordinate system, or (r, y) in
the rotating coordinate system. As seen in Fig. 1, the angular coordinates originate from the vertical axis
pointing downward through the wheel center and are taken as positive in the counter-clockwise direction. The
locations can also be expressed as Cartesian coordinates either (x, z) in the non-rotating coordinate system, or
(x*, z*) in the rotating coordinate system. The x-axis is positive in the direction of the forward velocity, and
the z-axis is positive in the downward direction.

According to thin shell assumption, the flexural strain of the ring can be written as

�y ¼
v̄0 þ w̄

r
þ

1

2

v̄0 þ w̄

r

� �2

þ
1

2

v̄� w̄0

r

� �2

(1)

where r and y are the mean radius and ring coordinates, respectively, v̄ and w̄ represent circumferential and
radial displacements of the ring, and primes designate the differentiation with respect to y. Note that the
nonlinear term has to be included in the strains in order to compute the initial stress work correctly [16–18].

Inserting the expressions b ¼ ðv� w0=rÞ; v̄ ¼ vþ zb; and w̄ ¼ w, where v and w represent the mid-plane
displacements, into Eq. (1) yields

�y ¼
v0 þ w

r
þ

1

2

v0 þ w

r

� �2

þ
1

2

v� w0

r

� �2

þ
z

r2
ðv0 � w00Þ (2)

The Hamilton principle is used to derive the equations of motion. Then all the energies can be expressed
as follows:

U ¼ b

Z 2p

0

Z ðh=2Þ
�ðh=2Þ

1

2
sy�y þ s0y�y

� �
rdzdyþ

Z 2p

0

1

2
kww2 þ

1

2
kvv

2

� �
rdy (3a)

T ¼

Z 2p

0

1

2
rArðð _w� OvÞ2 þ ð_vþ Oðwþ rÞÞ2Þdy (3b)
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W ¼ p0r

Z 2p

0

wþ
1

2r
ðv2 � vw0 þ v0wþ w2Þ

� �
dyþ

Z 2p

0

qwwþ qyvþ qb
v0 � w

r

� �
rdy (3c)

where U, T, and W are potential, kinetic, and external force energy, respectively, r the density, b the ring
width, p0 the internal pressure, A the ring section area which is the product of ring width b and the belt
effective thickness, k the elastic constant of foundation, h the ring thickness, qw, qv, and qb the applied radial,
tangential force, and moment, respectively, O the rotation speed, and s0y denotes the initial stress given by

s0yA ¼
1

2

Z p

0

ðrAO2rþ p0bÞ sin yrdy ¼ p0brþ rAr2O2 (4)

Hamilton principle can be expressed as

d
Z t2

t1

½U � T �W �dt ¼ 0 (5)

Substituting Eqs. (2)–(4) into Eq. (5), and rearranging the terms yields the final equations of motion

�
EI

r4
ðv6 þ 2v4 þ v00Þ þ s0yA

1

r2
ðv4 þ 2v00 þ vÞ � kwv00 þ kv � p0b

1

r
ðvþ v00Þ

þ rAð€v� €v00 � 4O _v0 þ O2ðv00 � vÞÞ ¼ q0w þ qv þ
1

r
q00b þ

1

r
qb (6)

where the inextensible condition, i.e., v0 þ w ¼ 0, is used. In Eq. (6), E is effective modulus of the belt and I the
moment of inertia, which means EI is the effective bending stiffness of the ring.
3. Parameters identification

As suggested by Gong [18], the natural frequencies of the non-rotating tires are used to determine the model
parameters and validate the model. With O, qw, qv and qb being set to zero, Eq. (6) can be written as

�
EI

r4
ðv6 þ 2v4 þ v00Þ þ

p0b

r
ðv4 þ v00Þ � kwv00 þ kv þ rAð€v� €v00Þ ¼ 0 (7)

Assume the free vibration mode in the sinusoidal series as follows:

vðy; tÞ ¼
X1
n¼0

An sinðnyþ ontÞ (8)

Inserting Eq. (8) into Eq. (7) yields the following natural frequency expression:

f n ¼
on

2p
¼

1

2p
1

rAð1þ n2Þ

EI

r4
½n6 � 2n4 þ n2�

��
þ

p0b

r
½n4 � n2� þ kwn2 þ kv

��1=2

(9)

By matching the natural frequencies predicted by Eq. (9) with the measured ones, the model physical
parameters, including kw, kv and EI are determined. The geometrical and structural model parameters,
including r, A, b, r and h, are obtained directly from the tire design. For a type of radial tire, 195/70R14, the
geometrical and structural model parameters are listed in Table 1.

Table 2 lists the natural frequencies up to the eighth mode of this tire obtained from experimental modal
analysis and theoretical prediction by Eq. (9). Through analyzing the experimental mode shape corresponding
to each natural frequencies, we know that rank 1 corresponds to n ¼ 2, rank 2 to n ¼ 3 and rank 8 to n ¼ 8.
Substituting the natural frequencies of n ¼ 2, 3, 8 in Eq. (9), and then solving for the model physical
parameters leads to kw ¼ 1:64� 106 N=m2; kv ¼ 2:19� 105 N=m2;EI ¼ 1:41Nm2. Substituting the obtained
physical parameters into Eq. (9) yields all natural frequencies. As for n ¼ 2, 3, 8, the predictions and
experiments agree exactly, as expected. For n ¼ 4–7, maximum error is only 0.92%. The good agreement
between the predictions and experiments, to a certain extent, validates the model.
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Table 1

Model geometrical and structural parameters of a 195/70R14 radial tire

Parameters type Unit Numerical value

b m 0.16

h m 0.01

A m2 0.0016

p0 N/m2 2.5� 105

r kg/m3 2.28� 103

r m 0.285

Table 2

Tire natural frequencies: experimental vs. REF model

Rank n ¼ 0 n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5 n ¼ 6 n ¼ 7 n ¼ ? n ¼ 8

fn: Experimental – – 108.53 132.38 158.30 186.92 213.60 248.14 255.36 278.54

fn: REF model 39.01 80.39 108.53 132.38 157.83 185.36 214.78 245.88 – 278.54
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4. General forced response of undamped rotating REF

4.1. Derivation of forced solution

While natural frequencies and modes provide important information for understanding the system, of more
interest is the response to certain types of forces. The forced response of the tangential displacement of the ring
to any arbitrary forcing function is therefore assumed to be of the form [17,18,20]

v ¼
X1
n¼1

X2
k¼1

½pnk sinðnyþ onktÞ� (10)

where onk are the natural frequencies, n the mode number, and pnk the modal participation factors, which are
unknown and depend on the applied forces. The above expression can be rearranged as

v ¼
X1
n¼1

½anðtÞ cos nyþ bnðtÞ sin ny� (11)

where an(t) and bn(t) are the generalized coordinates defined as

anðtÞ ¼
X2
k¼1

pnkðtÞ sin onktð Þ; bnðtÞ ¼
X2
k¼1

pnkðtÞ cosðonktÞ (12)

Substituting Eq. (11) into Eq. (6) and making use of the orthogonality of sin(ny) and cos(ny), the motion of the
tire ring model in the generalized coordinates an(t) and bn(t) reduces to a set of linear second-order ordinary
differential equations

mn

mn

" #
€an

€bn

( )
þ

0 gn

�gn 0

" #
_an

_bn

( )
þ

kn

kn

" #
an

bn

( )
¼

xn

zn

( )
(13)

where

kn ¼
EI

R4
n2 þ

s0y
R2

� �
ð1� n2Þ

2
þ kv þ kwn2 �

p0b

R
ð1� n2Þ � rAð1þ n2ÞO2; mn ¼ rAð1þ n2Þ,

and gn ¼ �4rAnO.
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The generalized force corresponding to physical force and moments are

xn ¼
1

p

R
qv þ q0w þ

1
R
ðqb þ q00bÞ

� 	
cos nydy

zn ¼
1

p

R
qv þ q0w þ

1
R
ðqb þ q00bÞ

� 	
sin nydy

8>><
>>:

9>>=
>>; (14)

Eq. (13) can be written in the matrix form

M€yþG_yþ Ky ¼ Q (15)

where

y ¼ an bn


 �T
; M ¼

mn

mn

" #
; G ¼

gn

�gn

" #
; K ¼

kn

kn

" #
and Q ¼

xn

zn

( )

It is seen that matrix G is skew-symmetric, GT
¼ �G, and matrix M and K are symmetric,

MT ¼M; KT ¼ K. Eq. (15) can be interpreted as a linear gyroscopic system with two degrees of freedom.
Meirovitch [33] has developed a closed form solution for such system in a manner similar to classical modal
analysis.

4.2. Analysis of response using Meirovitch method

The second0-order differential Equation (15) can be written in state space form as follows:

M

K

� �
_xþ

G K

�K 0

� �
x ¼

Q

0

� �
(16)

or

I _xðtÞ þG�xðtÞ ¼ Q̄ (17)

where x ¼ ½ _yT yT �T is the state vector and Q̄ the generalized force vector. Meirovitch [33] developed a modal
analysis method to obtain the closed form solution of Eq. (17). This method is especially designed to permit
the treatment of gyroscopic system of the type described by Eqs. (15) or (17). According to Meirovitch
method, the complete solution for the state vector of Eq. (17) can be obtained as follows:

xðtÞ ¼
Xn

r¼1

Z t

0

ðyry
T
r þ zrz

T
r ÞQ̄ðtÞ cos orðt� tÞ þ ðyrz

T
r � zry

T
r ÞQ̄ðtÞ sin orðt� tÞ


 �
dt

� �

þ ½ðyry
T
r þ zrz

T
r ÞIxð0Þ cosortþ ðyrz

T
r � zry

T
r ÞIxð0Þ sin ot� (18)

which represents the response to any excitation forces and initial disturbances. In Eq. (18), yr and zr are real
and imaginary part of the eigenvector of the system, as shown in Table 3.

4.3. Forced response of undamped rotating REF

In order to make use of Eq. (18) to obtain the solution of Eq. (15), one must first solve the eigenvalues and
eigenfunctions of state equation (17). To this end, the matrices I and G* with order 4� 4 are written as
follows:

I ¼
M

K

� �
; G� ¼

G K

�K 0

� �
(19)

Because the matrices I and G* are already specified, now the eigenvalue problem corresponding to Eq. (17)
can be solved. Table 3 shows the solution of this eigenvalue problem which consists of two pairs of repeated
eigenvalues o2

r and t pairs of associated eigenvectors yr and zr.
It is seen that the eigenvalues obtained here, or, r ¼ 1,2, are identical with the natural frequencies of

rotating tire REF model by Gong [18] or Dohrmann [19]. Inserting the obtained eigenvalues or, r ¼ 1,2, and
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Table 3

Eigenvalues and eigenfunctions of the linear gyroscopic system (Eq. (17))

o2
1;2 ¼

g2 þ 2km� gC

2m2

g2 þ 2kmþ gC

2m2

� �

z1 ¼
�gþ C

2
ffiffiffiffiffiffiffiffiffiffi
kmA
p 0 0

1ffiffiffiffi
A
p

� �
where

z2 ¼
�g�C

2
ffiffiffiffiffiffiffiffiffiffi
kmB
p 0 0

1ffiffiffiffi
B
p

� �
A ¼ 1þ

ðg�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4km

p
Þ
2

4km

y1 ¼ 0
g� C

2
ffiffiffiffiffiffiffiffiffiffi
kmA
p

1ffiffiffiffi
A
p 0

� �
B ¼ 1þ

ðgþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4km

p
Þ
2

4km

y2 ¼ 0
gþ C

2
ffiffiffiffiffiffiffiffiffiffi
kmB
p

1ffiffiffiffi
B
p 0

� �
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4km

p
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eigenvectors yr and zr, r ¼ 1,2 into Eq. (18) results in the formulation of response for undamped vibration of
rotating rings to any excitation forces and initial disturbances. As an example, the forced response of the
undamped rotating REF for stationary constant point load is investigated according to the developed
procedure. The closed form solution for transient response of the model is obtained.

The generalized force vector fQT 0 gT of Eq. (16) for the case of a concentrated transverse load is first
evaluated. By referring to Fig. 1, the stationary point load on the rotating ring can be described as

qw ¼
�f

r

� �
dðy� ðf0 � OtÞÞ; qv ¼ qb ¼ 0 (20)

where f is the applied force per unit width and minus sign indicates the force direction opposite to the positive
transverse displacement, f0 is the initial point load location at a time equal to zero. The generalized force
vector of Eq. (17) therefore becomes

Q̄ðtÞ ¼ �
nf

pr
sin nðf0 � OtÞ

nf

pr
cos nðf0 � OtÞ 0 0

� �T

(21)

Introducing Eq. (21), the eigenvalues or, r ¼ 1,2, and eigenvectors yr and zr, r ¼ 1,2 described in Table 3, into
Eq. (18) and then making use of Eq. (11) yields the closed form tangential displacement response as follows:

vðy; tÞ ¼ �
X1
n¼1

nf
sin nf� ðð1=2Þ þ ĀÞ sinðnfþ ôn1tÞ � ðð1=2Þ � ĀÞ sinðnfþ ôn2tÞ

pðmnn2O2 þ gnnO� knÞ

� �
(22)

where

f ¼ yþ Ot; Ā ¼
rAnðn2 � 1ÞOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
n þ 4knmn

p
and ôn1;2 ¼ on1;2 � nO are the natural frequencies of the system in the fixed reference frame (see Ref. [19]).

The transverse displacements can be determined according to the relation, v0+w ¼ 0, as follows:

wðy; tÞ ¼
X1
n¼1

n2f
cos nf� ðð1=2Þ þ ĀÞ cosðnfþ ôn1tÞ � ðð1=2Þ � ĀÞ cosðnfþ ôn2tÞ

pðmnn2O2 þ gnnO� knÞ

� �
(23)

It is seen that the solutions (22) and (23) include not only steady but also transient response. The steady
solutions for tangential and transverse displacements are, respectively, as follows:

vðy; tÞ ¼ �
X1
n¼1

nf sin nf=pðmnn2O2 þ gnnO� knÞ

 �

(24)

wðy; tÞ ¼
X1
n¼1

n2f cos nf

pðmnn2O2 þ gnnO� knÞ

� �
(25)
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By integrating the distributed forces in the sidewall springs the wheel center load is obtained as

F axle ¼ �f f1� cosðô1tÞg (26)

where the orthogonality of trigonometric functions is used.
Fig. 2. Schematic of steady radial deformation (m) configuration, O ¼ 200 rad/s: undamped.

Fig. 3. Steady radial deformation (m) along the circumference (radian), O ¼ 200 rad/s: undamped.
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Fig. 4. Variation of wheel center load (N) with time (s), O ¼ 200 rad/s: undamped.

Fig. 5. Variation of radial deformation (m) at loading point with time (s), O ¼ 200 rad/s: undamped.
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Note that in the above equation ô1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkw þ kvÞ=2rA

p
is independent of the rotating speed. It can

be seen that the wheel center load behaves like a vibration system with one degree of freedom whose
vibration frequency is independent of rotating speed and equal to the first-order natural frequency
of non-rotating rings. Because the parameters of tire ring model are already specified previously, given applied
force f (here f ¼ 10 000N) we can give numerical results of the tire response including wheel center
load and tire displacements, some of which are graphically shown in Figs. 2–5. It is seen that the tire
displacements at the loading point contain multiple frequencies (see Fig. 5) in contrast with the wheel center
load (see Fig. 4).

5. General forced response of damped rotating REF

5.1. The equations of motion for damped rotating REF

In the case of damped vibration, the tire is modeled as a ring on viscoelastic foundation with distributed
springs, kw and kv, and damping coefficients, cw and cv, in the radial and tangential directions respectively
[19,20]. The equations of motion (6) therefore are modified as

�
EI

r4
ðv6 þ 2v4 þ v00Þ þ s0yA

1

r2
ðv4 þ 2v00 þ vÞ � kwv00 þ kvv� cw _v

00 þ cv _v� p0b
1

r
ðvþ v00Þ

þ rAð€v� €v00 � 4O_v0 þ O2ðv00 � vÞÞ ¼ q0w þ qv þ
1

r
q00b þ

1

r
qb (27)
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The actual damping characteristics of a complex system such as the tire are very difficult to model precisely.
For the sake of simplification, the linear viscoelastic elements are included in the viscoelastic foundation. Kim
and Savkoor [20] investigated the effects of different damping models on the tire steady behaviors
(contact pressure distribution, rolling resistance).

Substituting Eq. (11) into Eq. (27) and making use of the orthogonality of sin(ny) and cos(ny) yields the
motion of the damped tire ring model in the generalized coordinates an(t) and bn(t)

M€yþ ½Gþ C�_yþ Ky ¼ Q (28)

where

M ¼
mn

mn

" #
; G ¼

gn

�gn

" #
; C ¼

cn

cn

" #
; K ¼

kn

kn

" #
; and Q ¼

xn

zn

( )

In the state space, Eq. (28) can be rewritten as

I _xðtÞ þG�xðtÞ ¼ Q̄ (29)

where

I ¼
M

K

� �
; G� ¼

Gþ C K

�K 0

� �
; Q̄ ¼

Q

0

� �
; cn ¼ cv þ cwn2 (30)

The viscous damping coefficients, cw and cv, are difficult to determine directly for a given tire; however, the
damping coefficients cn can be deduced from the measured modal damping coefficients, zn, from the
relationship cn ¼ 2zn

ffiffiffiffiffiffiffiffiffiffiffi
knmn

p
.

Eq. (29) can be interpreted as a linear damped gyroscopic system [34] with two degrees of freedom. The
problem of damped gyroscopic system is considerably more complicated than those corresponding to
undamped gyroscopic, damped or undamped natural system cases. The sum of the damping matrix and the
gyroscopic matrix, i.e., G* is an arbitrary matrix. Hence, any advantage resulting from the symmetry or skew-
symmetry of coefficient matrices is lost, so that one must return to the general theory. However, in the case of
small damping, the damping can be regarded as a perturbation to the unperturbed gyroscopic system. A first-
order perturbation theory is adopted to obtain the solution for the response of slightly damped gyroscopic
systems, e.g., the rotating ring model state equation (29), in this paper.

5.2. System response solution based on perturbation theory of matrix [34]

In the case of slightly damped gyroscopic systems such as Eqs. (28) or (29), the matrix C can be regarded as
being of one order of magnitude smaller than matrix G and K. Hence, one can rewrite Eq. (29) as

_XðtÞ þ AXðtÞ ¼ ~U (31)

where

I ¼ LLT; A ¼ A0 þ A1; A0 ¼ L�1
G K

�K 0

� �
L�T; A1 ¼ L�1

C 0

0 0

� �
L�T; ~U ¼ L�1QL�T

The symmetry and skew-symmetry of A1 and A0, respectively, are readily apparent. Because matrix A1 is one
order of magnitude smaller than A0, the theory of first-order perturbation of matrix is applicable. Based on the
formulation for response of general damped gyroscopic systems [34] and the first-order perturbation solution
for slightly damped gyroscopic system, the system response of Eq. (29) can be obtained as follows:

_yðtÞ

yðtÞ

� �
¼ L�T

Xn

i¼1

e�l1i t cos o0itRiL
T _yð0Þ

yð0Þ

� ��
þ e�l1i t sin o0itIiL

T _yð0Þ

yð0Þ

� �

þ

Z t

0

e�l1iðt�tÞ cos o0iðt� tÞRiL
�1 Q̄ðtÞ

0

� �
dtþ

Z t

0

e�l1iðt�tÞ sin o0iðt� tÞIiL
�1 Q̄ðtÞ

0

� �
dt
�

(32)
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where Ri and Ii are the respective real and imaginary parts of the 2n� 2n matrix ŷi ẑ
T
i , i.e.,

ŷiẑ
T
i ¼ Ri þ iIi; i ¼ 1; 2; . . . ; 2n (33)

in which ŷi and ẑi are the right and left eigenvectors of A respectively, l1i is the first correction
of the eigenvalue of A. Eq. (32) describes the response of the system in terms of real quantities alone.
It should be pointed out that all the quantities for the evaluation of the first-order perturbations are computed
by means of the eigenvalues and eigenvectors of the unperturbed system: i.e., those of an undamped
gyroscopic system.

5.3. Formulation for response of damped vibration of rotating REF

Consider the two-degree of freedom, damped gyroscopic system Eq. (28) and its state expression Eq. (29).
Eqs. (28) and (30) form the matrices I and G*:

I ¼
M

K

� �
¼

mn

mn

kn

kn

2
6664

3
7775; G� ¼

Gþ C K

�K 0

� �
¼

cn gn kn

�gn cn kn

�kn 0

�kn 0

2
6664

3
7775 (34)

The Cholesky decomposition matrix I, and its inverse, are

L ¼

ffiffiffiffiffiffi
mn
p ffiffiffiffiffiffi

mn
p ffiffiffiffiffi

kn

p

ffiffiffiffiffi
kn

p

2
6664

3
7775; L�1 ¼

1=
ffiffiffiffiffiffi
mn
p

1=
ffiffiffiffiffiffi
mn
p

1=
ffiffiffiffiffi
kn

p

1=
ffiffiffiffiffi
kn

p

2
66664

3
77775 (35)

Following Eq. (31), one forms matrices A0, and A1:

A0 ¼

0 g=m
ffiffiffi
k
p

=m

�g=m 0
ffiffiffi
k
p

=m

�
ffiffiffi
k
p

=m 0

�
ffiffiffi
k
p

=m

2
66664

3
77775; A1 ¼

c=m

c=m

0

0

2
6664

3
7775 (36a,b)

Computations of the perturbations to the undamped eigensolutions proceed as indicated previously. The
results are summarized in Table 4. One should note that the system eigenvalues and associated eigenvectors
occur in complex conjugate pairs. Hence, one half of them are included. Furthermore, only the right
eigenvectors are included.

The responses to the stationary constant point load f (here f ¼ 10000N) have been computed. Fig. 6
represents the steady deformation configuration of the model and Fig. 7 shows the steady radial
deformation along the circumference. From Fig. 8 it is shown that the transient part of tire–wheel
center load for the damped rotating ring model will be damped out eventually. As mentioned earlier,
Table 4

Eigenvalues and eigenfunctions of the linear damped gyroscopic system (Eq. (29))

l1
l2

�cðg2 þ 2km� gCÞ

mðC2 � gCÞ

�cðg2 þ 2kmþ gCÞ

mðC2 þ gCÞ

where

ŷ11
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kmðgþCÞ

p
D1

ic
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kmðgþ CÞ

p
D1

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ikmc
p

D1

�2
ffiffiffiffiffiffiffiffiffiffiffi
2kmc
p

D1

( )
D1 ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 � gC

km
ðC2 þ gCÞ

r

ŷ12
ic

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kmðg�CÞ

p
D2

�c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kmðg� CÞ

p
D2

�2
ffiffiffiffiffiffiffiffiffiffiffi
2kmc
p

D2

�i2
ffiffiffiffiffiffiffiffiffiffiffi
2kmc
p

D2

( )
D2 ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ gC

km
ðC2 � gCÞ

r
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Fig. 6. Schematic of steady deformation (m) configuration, O ¼ 200 rad/s: (—), undamped; (- - -), modal damping ¼ 0.1.

Fig. 7. Steady radial deformation (m) along the circumference (radian), modal damping ¼ 0.1, O ¼ 200 rad/s.
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the variation of wheel center load behaves like a damped single degree of freedom system (see Fig. 8).
The effect of damping on the tire deformation is demonstrated in Figs. 6 and 9. Fig. 10 shows the variation of
tire deformation with time; it is observed that after about 0.1 s the tire deformation reaches its steady state in
this case.
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Fig. 8. Variation of tire wheel center load (N) with time (s), modal damping ¼ 0.1, O ¼ 200 rad/s: (- - -), vertical force; (—) fore-and-aft

force.

Fig. 9. Variation of radial deformation (m) at loading point with time (s), O ¼ 200 rad/s: (—), modal damping ¼ 0.01; (- - -), modal

damping ¼ 0.1.
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6. Discussions

6.1. Validation of the matrix perturbation theory

To validate the developed matrix perturbation theory for the analysis of damped REF, a direct numerical
integration has been performed for Eq. (29). Corresponding to the numerical case in Section 5.3, the
generalized force vector Q̄ can be written as

Q̄ðtÞ ¼ �10000
n

pr
sin nðf0 � OtÞ 10000

n

pr
cos nðf0 � OtÞ 0 0

� �T

(37)

With the initial conditions x(t) ¼ 0, i.e. an ¼ bn ¼ _an ¼
_bn ¼ 0, Eq. (29) has been numerically solved to get

an; bn; _an; _bn up to n ¼ 30. The numerical solutions of an; bn; _an; _bn from Eq. (29) are then compared with those
from matrix perturbation theory, i.e. Eq. (32).

Figs. 11 to 13 show comparisons of modal coordinates of n ¼ 1, 10 and 30 from direct numerical integration
and matrix perturbation theory respectively. It can be found that the modal coordinates an, bn for all cases
match very well, while _an; _bn have a very slight difference. Therefore, it can be concluded that the matrix
perturbation theory developed in this work is accurate enough for the damped REF model.

Fig. 14 shows the modal coordinates of n ¼ 1, 10, in fixed coordinates system, demonstrating the accuracy
of the developed method in another way.
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Fig. 10. Variation of tire deformation (m) with time (s): modal damping ¼ 0.1, O ¼ 200 rad/s: (a) t ¼ 0.0005 s, (b) t ¼ 0.001 s,

(c) t ¼ 0.005 s, (d) t ¼ 0.01 s, (e) t ¼ 0.05 s, and (f) t ¼ 0.1 s.
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6.2. Stability analysis

Eq. (32) can be interpreted as a formulation of damped dynamic response under initial conditions, where the
the first correction of the eigenvalue l1i plays the role of damping. Then the stability condition of the system
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Fig. 11. Comparisons of modal coordinates of n ¼ 1, from: (- - -), direct numerical integration; (—), matrix perturbation theory.

Fig. 12. Comparisons of modal coordinates of n ¼ 10, from: (- - -), direct numerical integration; (—), matrix perturbation theory.
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Fig. 13. Comparisons of modal coordinates of n ¼ 30, from: (- - -), direct numerical integration; (—), matrix perturbation theory.

Fig. 14. Modal coordinates in fixed coordinates system: (- - -), direct numerical integration; (—), matrix perturbation theory.
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can be written as

l1ip0 (38)

From this stability condition, the critical speed can be derived as

Ocri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIð�n2 þ 2n4 � n6Þ þ p0br3ðn2 � n4Þ � r4ðkv þ kwn2Þ

rAr4ðn4 � 3n2Þ

s
(39)

It is easy to find that for only n ¼ 1, Eq. (39) has solution with Ocri ¼ o1.

6.3. Potential application of the developed approach

The analytical formulation described in Eq. (32) provides much flexibility in modeling rotating vibration
structures such as rolling tires. One advantage of the formulation is that it includes transient response, which
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make it possible the real dynamic modeling of rolling tire over cleat or uneven road by REF model [35,36].
Another advantage is that it provides a way to get dynamic flexibility matrix of the tire, based on which the
matrix condensation method may be used to solve the dynamic contact response more quickly and efficiently.

7. Summary and conclusions

This paper presents a new analytical formulation of complete forced solution including transient response
for the rotating tire REF model. The developed methodology features the application of Meirovitch modal
analysis and matrix perturbation theory. Both the steady state and transient responses of rotating tires can be
analyzed by using REF model and the proposed approach. By comparison with the direct numerical
integration method, it can be seen that the developed theory produces quite accurate results. It is shown that
for the damped rotating REF under stationary constant point load, the wheel center load variation behaves
like the damped vibration of a single degree of freedom system and converges to the applied load while the
displacements at the loading point contain multiple frequencies. The developed theory provides much
flexibility in modeling rotating vibration structures such as rolling tires. Incorporating a contact or interface
model, the proposed method can be used to understand and model the tire dynamic responses under universal
road situations such as an obstacle or a cleat.
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